Документ подписан простой электронной подписью

Информация о владельце: ФИО: Косет Сестовов задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата подписания: 06.06.2024 06:43:51 Диффере нциальная геометрия, 5 семестр

Уникальный программный ключ: e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	01.03.02, Прикладная математика и информатика
Направленность (профиль)	Прикладная математика и информатика
Форма обучения	очная
Кафедра-разработ- чик	Прикладная математика
Выпускающая ка- федра	Прикладная математика

Проверяе- мая компе- тенция	Задание	Варианты ответов	Тип сложно- сти вопроса	Кол-во бал- лов за пра- вильный от- вет
ОПК 1.1	Предел вектор- функции $\vec{a}(t)$ при $t \to t_0$ является?	1.скалярной функцией 2.вектор-функцией 3.числом. 4.постоянным вектором	низкий	2
ОПК 1.1	Пусть $\vec{a}(t)$ и $\overline{b(t)}$ вектор-функции, дифференцируемые в точке t , а $\varphi(t)$ дифференцируемая в этой же точке скалярная функция. Какие формулы являются верными?	1. $(\varphi \vec{a})' = \varphi \vec{a}'$ 2. $(\vec{a}\vec{b})' = \vec{a}'\vec{b} + \vec{a}\vec{b}'$ 3. $(\vec{a} \times \vec{b})' = \vec{a}' \times \vec{b} + \vec{a} \times \vec{b}'$ 4. $(\vec{a}\vec{b})' = \vec{a}'\vec{b}'$	средний	5
ОПК 1.1	Пусть $\vec{r}(t) = \{x(t), y(t), z(t)\}$.Отметьте верные равенства.	$1.\vec{r'}(t) = \{x'(t), y'(t), z'(t)\}$ $2.\int \vec{r}(t)dt = \{\int x(t)dt, \int y(t)dt, \int z(t)dt\}$ $3.\vec{r}(t) = x(t)\vec{a} + y(t)\vec{b} + z(t)\vec{c}$, где $\vec{a}, \vec{b}, \vec{c}$ - произвольные векторы $4. \vec{r}(t) = \sqrt{x^2(t) + y^2(t) + z^2(t)}$.	высокий	8
ОПК 1.1	Какое из определений элементарной кривой является верным?	1.множество точек, являющееся образом открытого отрезка прямой при топологическом отображении его в пространство. 2. множество точек, являющееся образом открытого отрезка прямой при взаимно однозначном отображении его в пространство. 3. множество точек, являющееся образом открытого отрезка прямой при инъективном отображении его в пространство.	низкий	2

		4. множество точек, являюще-		
		еся образом открытого отрезка		
		прямой при сюръективном		
		отображении его в простран-		
	<u> </u>	ство.		
ОПК 1.1	Пусть у –гладкая	1.если у каждой точки кривой γ	средний	5
	кривая. Какие из	есть окрестность, допускающая		
	утверждений явля- ются верными?	непрерывно дифференцируе-		
	ются верными:	мую параметризацию. 2. если у каждой точки кривой γ		
		есть окрестность, допускающая		
		k-раз дифференцируемую па-		
		раметризацию.		
		3. если у каждой точки кривой γ		
		есть окрестность, допускающая		
		регулярную параметризацию. 4. если у некоторой точки кри-		
		вой есть окрестность, допуска-		
		ющая непрерывно дифферен-		
		цируемую параметризацию.		
ОПК 1.1	Если $x(t), y(t), z(t)$ -	1.x' + y' + z' > 0	средний	5
	гладкие функции,	$2 \cdot x^2 + y^2 + z^2 > 0$		
	то равенства $x = x(t), y = y(t), z = x(t)$	$3.x'^{2} + y'^{2} + z'^{2} > 0$ $4.x'^{2} + y'^{2} + z'^{2} = const$		
	z(t), y = y(t), z = z(t) задают некото-	$\begin{bmatrix} \neg . \lambda & \top y & \top Z & - \text{ const} \end{bmatrix}$		
	рую кривую при			
	условии?			
ОПК 1.1	Какие параметри-	$1.x = \frac{t^2}{2}, y = \frac{2\sqrt{2}}{3}t^{\frac{3}{2}}, z = t$	высокий	8
	зации являются	2 _ 3 _		
	естественными?	$2.\vec{r}(t) = \frac{\sqrt{2}}{2}\cos^2 t\vec{i} + \frac{\sqrt{2}}{2}\sin^2 t\vec{j} +$		
		$\frac{1}{2}$ sin2t \vec{k}		
		$3.x = 2 - \frac{2}{3}t, y = 3 + \frac{1}{3}t, z = \frac{2}{3}t$		
		$4.x = e^t cost, y = e^t sint, z = e^t$		
ОПК 1.1	Уравнение каса-	1.x = 1, y = 2t, z = 3t	низкий	2
	тельной для кривой	$2.x = \frac{t-1}{2}, y = \frac{t-1}{3}, z = t-1$		_
	$x = t, y = t^2, z = t^3$	$3.\frac{x-1}{2} = \frac{y-2}{y-2} = \frac{z}{2}$		
	в точке $t=1$ имеет	1 2 3		
	вид? Уравнение нор-	4.x = t + 1, y = 2t + 1, z = 3t + 1 $1.x = 1, y = 2t, z = 3t$	средний	E
ОПК 1.1	мальной плоскости		ср ед пии	5
	для кривой $x =$	$2 \cdot \frac{x-1}{1} = \frac{y-2}{2} = \frac{z}{3}$		
	$t, y = t^2, z = t^3 B$	$\begin{vmatrix} 3.x = t + 1, y = 2t + 1, z = 3t + 1 \\ 4.x + 2y + 3z - 6 = 0 \end{vmatrix}$		
	точке $t=1$ имеет	$\begin{bmatrix} \neg . \lambda + 2y + 32 - 0 - 0 \end{bmatrix}$		
0.711	вид?	,t-		
ОПК 1.1	Пусть кривая за-	$1.s = \int_{t_1}^{t_2} \vec{r}(t)dt$	низкий	2
	дана в виде $\vec{r} = \vec{r}(t)$. Длин дуги вы-	$2.s = \int_{t_s}^{t_2} \vec{r}(t) dt$		
	числяется по фор-	$3.s = \int_{t_{*}}^{t_{2}} \vec{r}'(t)dt$		
	муле?			
		$4.s = \int_{t_1}^{\hat{t}_2} \vec{r}'(t) dt$		
ОПК 1.1	Единичный вектор	1. $\{6t^3 + 2,8t^2 + 1,6t - 2t^2\}$	высокий	8
	главной нормали для кривой $x =$	$2.\{9t^3 + 2t, 9t^4 - 1, -6t^3 - 2t\}$ $3.\{t - 2t^2, 9t - 3, -6t^3 - 2t\}$		
	$t, y = t^2, z = t^3$ в	$3.\{t-2t, 9t-3, -6t-2t\}$ $4.\{1+2t, 7t^2-t, 4t^3-t^2\}$		
	произвольной	(2 . 20,70 0, 10 0)		
	точке имеет вид?			
ОПК 1.1	Уравнение спрям-	17x + 2y + 3z + 11 = 0	высокий	8
	ляющей плоскости	2.4x + 2y - 30z - 6 = 0		
	для кривой $x = t, y = t^3, z = t^2 + 4$	$\begin{vmatrix} 3.11x + 9y + 8z - 60 = 0 \\ 4.4x - 2y - 3z - 26 = 0 \end{vmatrix}$		
	$t, y = t^{-}, z = t^{-} + 4$ В точке $t = 1$ имеет	4.4x - 2y - 5z - 20 = 0		
	вточке $t = 1$ имисет вид?			
ОПК 1.1	Какие из кривых яв-	$1.x = 2t, y = lnt, z = t^2$	средний	5
	ляются плоскими?			

		$2.x = \frac{1}{1-t}, y = \frac{1}{1-t^2}, z = \frac{1}{1+t}$		
		$3.x = t^2 - 1, y = t^2 + 2, z = t^3$		
ОПК 1.1	Какие из квадра- тичных форм могут быть первой квад- ратичной формой некоторой поверх- ности?	$4.x = 3t - t^{3}, y = 3t^{2}, z = 3t + t^{3}$ $1.3du^{2} + 4dudv - 5dv^{2}$ $2.5du^{2} - 6dudv + 2dv^{2}$ $3.du^{2} - 2dudv + dv^{2}$ $4.5du^{2} + 4dudv + dv^{2}$	средний	5
ОПК 1.1	Длина дуги линии $v=au$, лежащей на поверхности $x=u^2+v^2, y=u^2-v^2, z=uv$, заключенной между точками пересечения с координатными линиями $u=1, u=2$ равна.	$ 1.\sqrt{2+2a} 2.3\sqrt{2+a^2+2a^4} 3.\sqrt{2a+3a^2} 4.\sqrt{2+a+2a^2} $	средний	5
ОПК 1.1	Угол между координатными линиями поверхности $x = r\cos v\cos u$, $y = r\sin v\cos u$, $z = r\sin u$, в произвольной точке равен	$ \begin{array}{c} 1.\frac{\pi}{3} \\ 2.\frac{\pi}{4} \\ 3.\frac{\pi}{2} \\ 4.\frac{\pi}{6} \end{array} $	средний	5
ОПК 1.1	Вторая квадратич- ная форма поверх- ности $x = u \cos v$, $y = u \sin v$, $z = av$ имеет вид	$ 1.\frac{-2dudv}{\sqrt{a^2+u^2}} 2.adu^2 - 6dudv 3.du^2 - 2adudv 4.5adu^2 + a^2dv^2 $	средний	5
ОПК 1.1	Нормальная кривизна координатной линии u поверхности $x = u \cos v$, $y = u \sin v$, $z = av$ равна	1.0 $2.\sqrt{a}$ 3.2a $4.\frac{1}{a}$	средний	5
ОПК 1.1	Поверхность задана уравнением $\vec{r} = \vec{r}(u,v)$. Уравнение касательной плоскости в точке $p(u,v)$ имеет вид.	$1.(\vec{R} - \vec{r}, \vec{r}_{u}, \vec{r}_{v}) = 0$ $2.(\vec{R} - \vec{r}, \vec{r}_{uv}, \vec{r}_{uu}) = 0$ $3.(\vec{R} - \vec{r}, \vec{r}_{u}, \vec{r}_{uu}) = 0$ $4.(\vec{R} - \vec{r}, \vec{r}_{u}, \vec{r}_{uv}) = 0$	низкий	2
ОПК 1.1	На поверхности $z = x^2 + y^2$ все точки являются?	1.Омбилическими 2.Эллиптическими 3.Гиперболическими 4.Параболическими	высокий	8