Документ подружент подруж

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 19.06.2024 07:20:13

Уникальный программный ключ:

уникальный программный ключ: Технологии программирования, 6 семестр e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Vол. направление польсторки	09.03.01	Информатика	И	вычислительная
Код, направление подготовки	техника			
Направленность (профиль)	ИИиЭС			
Форма обучения	Очная			
Кафедра разработчик	АСОИУ			
Выпускающая кафедра	АСОИУ			

№	Проверяемая компетенция	Задание	Варианты ответов	Тип сложности вопроса
1	ОПК-1.1, ОПК- 2.1, ПК-3.1, ПК- 5.1, ПК-11.1	Какие существуют метрики, отражающие эффективность алгоритма?	1. процессорное время, память 2. адаптивность, простота реализации 3. надежность, масштабируемость	Низкий
2	ОПК-1.1, ОПК- 2.1, ПК-3.1, ПК- 5.1, ПК-11.1	Динамические структуры данных — это структуры данных, под которые и по мере		Низкий
3	ОПК-1.1, ОПК- 2.1, ПК-3.1, ПК- 5.1, ПК-11.1	При рассмотрении времени работы Т(М) и памяти М(N) что нас интересует?	·	Низкий

4	ОПК-1.1, ОПК- 2.1, ПК-3.1, ПК- 5.1, ПК-11.1	Какая оценка снизу справедлива для сортировок?	2. O(N*log N)	Низкий
5	ОПК-1.1, ОПК- 2.1, ПК-3.1, ПК- 5.1, ПК-11.1	При размере входных данных N, как рассчитывается время работы алгоритма?	 в сравнении с N как функция от параметра N не зависимо от N как O(N) 	Низкий
6	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Соотнесите алгоритмы сортировки с их временной сложностью	1. Пузырьком O(N+K) 2. Быстрая O(N*log(N)) 3. Подсчётом O(N^2)	Средний
7	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Для алгоритма сортировки слиянием merge -sort при каком количестве элементов в последовательн ости рекурсивное деление должно прерываться, в стандартном виде?	1. 2 2. 1 3. 3 4. 4	Средний
8	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Какое максимальное		Средний

	Г			
9	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Какое дерево называется разбалансирова нным?	1. если существуют вершины-потомки, ключи которых больше ключей родителей, если в остальных вершинах это свойство не нарушено 2. размеры левых и правых поддеревьев в нем сильно различаются 3. если значения ключей в левом поддереве намного меньше значений ключей в правом поддереве 4. если в нем нарушен порядок неубывания ключей	Средний
10	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Где будет находиться наиболее часто встречающийся символ в дереве кодирования Хаффмана?	1. на нижнем уровне дерева 2. в самой крайней левой вершине 3. в самой крайней правой вершине 4. на вернем уровне дерева 5. может находиться в любом месте	Средний
11	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Бинарное дерево — это структура данных, в которой каждый содержит и на левого и правого		Средний
12	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Какие две операции должен выполнять стек?	1. enqueue, dequeue 2. push, pop 3. set, get 4. insert, delete	Средний

13	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Сколько дополнительной памяти требуется для работы алгоритма quick -sort?	дополнительную память 2. O(N^2) 3. O(N^3)	Средний
14	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Что означает устойчивость алгоритма сортировки?	1. процент ошибок при сортировке меньше 2. сортировка происходит на любых данных 3. если при работе алгоритма относительный порядок пар с равными ключами не меняется 4. время работы алгоритма относительно стабильно при различной величине входных данных	Средний
15	ОПК-2.2, ПК-3.2, ПК-5.2, ПК-11.2	Какие высказывания относятся к структуре данных связный список?	1. эта структура используется для реализации стека 2. в конце структуры нулевой указатель, указатель на первый элемент хранится отдельно 3. время доступа к элементу константное 4. в каждом узле содержатся указатель на следующий узел и данные	Средний
16	ОПК-1.3, ОПК- 2.3, ПК-5.3, ПК- 3.3, ПК-11.3	OHENSIING	1. вершину w объявим левым сыном v, если key(v) > key(w) 2. поиск ключа x в дереве 3. если поиск завершился неудачей, создадим новую вершину w с ключем x 4. если поиск завершился удачей, создадим новую вершину w с ключем x 5. вершину w объявим правым сыном v, если key (v) < key(w)	Высокий

17	ОПК-1.3, ОПК- 2.3, ПК-5.3, ПК- 3.3, ПК-11.3	порадок попек	1. length 2. next 3. offset	Высокий
18	ОПК-1.3, ОПК- 2.3, ПК-5.3, ПК- 3.3, ПК-11.3	_	1. алфавит 2. множество целых чисел, называемое ключами 3. правила 4. аксиома 5. набор ограничений 6. теорема	Высокий
19	ОПК-1.3, ОПК- 2.3, ПК-5.3, ПК- 3.3, ПК-11.3	Основные проблемы, которые необходимо решать при реализации алгоритма RLE:	1. корректная работа со скользящим окном 2. хранение таблицы символов 3. способность алгоритма отличать закодированные данные от исходных 4. сохранение закодированных на диск	Высокий
20	ОПК-1.3, ОПК- 2.3, ПК-5.3, ПК- 3.3, ПК-11.3	Что можно сделать для алгоритма Quick-sort, чтобы дерево рекурсии было всегда сбалансированным?	1. уменьшить число рекурсий в рекурсивной функции 2. увеличить количество рекурсивных вызовов для функции 3. заменить рекурсию на цикл 4. выбирать правильный опорный элемент (pivot)	Высокий

№	ПРАВИЛЬНЫЕ ОТВЕТЫ
1	процессорное время, память
2	память; выделяется; освобождается; необходимости
3	приближенный до константы вид функций. Используется О-символика
4	O(N*log N)

5	как функция от параметра N		
6	Пузырьком $O(N^2)$; Быстрая $O(N*log(N))$; Подсчётом $O(N+K)$		
7	1		
8	2 шт.		
9	размеры левых и правых поддеревьев в нем сильно различаются		
10	на вернем уровне дерева		
11	иерархическая; узел; значение; ссылки; потомка		
12	push, pop		
13	алгоритм не использует дополнительную память		
14	если при работе алгоритма относительный порядок пар с равными ключами не меняется		
15	в каждом узле содержатся указатель на следующий узел и данные; эта структура используется для реализации стека; в конце структуры нулевой указатель, указатель на первый элемент хранится отдельно; время доступа к элементу константное		
16	если поиск завершился удачей, создадим новую вершину w с ключем х		
17	offset; length; next		
18	алфавит; аксиома; правила		
19	сохранение закодированных данных на диск; способность алгоритма отличать закодированные данные от исходных		
20	уменьшить число рекурсий в рекурсивной функции; выбирать правильный опорный элемент (pivot)		