Информация о владельце:

Документ подписан простой электронной подписью **учреждение высшего образования**

ФИО: Косенок Сергей Михайлович

Ханты-Мансийского автономного округа-Югры "Сургутский государственный университет"

Должность: ректор

Дата подписания: 10.06.2024 12:57:24 Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

УТВЕРЖДАЮ Проректор по УМР

Е.В. Коновалова

16 июня 2022 г., протокол УС №6

МОДУЛЬ ДИСЦИПЛИН ПРОФИЛЬНОЙ **НАПРАВЛЕННОСТИ**

Переходные процессы в электроэнергетических системах

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Радиоэлектроники и электроэнергетики

Учебный план bz130302-Энерг-22-4.plx

13.03.02 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА

Направленность (профиль): Электроэнергетические системы и сети

Квалификация бакалавр

Форма обучения заочная

Общая трудоемкость 8 3ET

Часов по учебному плану 288

в том числе:

34 аудиторные занятия самостоятельная работа 236 часов на контроль 18

Распределение часов дисциплины по курсам

Курс	4	4		5		Итого	
Вид занятий	УП	РΠ	УП	РΠ	YIT	010	
Лекции	8	8	4	4	12	12	
Лабораторные	6	6	4	4	10	10	
Практические	8	8	4	4	12	12	
Итого ауд.	22	22	12	12	34	34	
Контактная работа	22	22	12	12	34	34	
Сам. работа	113	113	123	123	236	236	
Часы на контроль	9	9	9	9	18	18	
Итого	144	144	144	144	288	288	

Виды контроля на курсах:

экзамены 4, 5

курсовые проекты 5

Программу составил(и):

старший преподаватель, Антипин Дмитрий Павлович

Рабочая программа дисциплины

Переходные процессы в электроэнергетических системах

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

составлена на основании учебного плана:

13.03.02 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА Направленность (профиль): Электроэнергетические системы и сети утвержденного учебно-методическим советом вуза от 16.06.2022 протокол № 6.

Рабочая программа одобрена на заседании кафедры

Радиоэлектроники и электроэнергетики

Зав. кафедрой к.ф-м.н., доцент Рыжаков В.В.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Целью дисциплины является получение необходимых теоретических знаний по анализу переходных процессов в электроэнергетических системах; изучения влияния этих процессов на режимы работы электротехнического оборудования, электроэнергетические системы и их объекты; усвоение практических методов расчета и анализа режимов коротких замыканий статической и динамической устойчивости.

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП					
Ци	икл (раздел) ООП:	Б1.В.01				
2.1	Требования к предвар	ительной подготовке обучающегося:				
2.1.1	Учебная практика, прак	тика по получению первичных навыков научно-исследовательской работы				
2.1.2	Электроэнергетические	системы и сети				
2.1.3	Алгоритмы задач электр	роэнергетики				
2.1.4	Общая энергетика					
2.1.5	Силовая электроника					
2.1.6	Теоретические основы з	электротехники				
2.1.7	Учебная практика, озна	комительная практика				
2.1.8	Электрические машины					
2.1.9	Введение в профессион	альную деятельность				
2.1.10	Электрический привод					
2.2	Дисциплины и практи предшествующее:	ки, для которых освоение данной дисциплины (модуля) необходимо как				
2.2.1	Электроэнергетические	системы и сети				
2.2.2	Дальние электропередач	чи сверхвысокого напряжения				
2.2.3	Монтаж и эксплуатация	оборудования электрических сетей				
2.2.4	Оперативно-диспетчерс	жое управление				
2.2.5	Производственная прак	тика, преддипломная практика				
2.2.6	Системы автоматизации	и диспетчерского управления				
2.2.7	Эксплуатация электрич	еских сетей				
2.2.8	Электроснабжение					

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ПК-4.2: Рассчитывает параметры и режимы работы технологического оборудования объектов профессиональной деятельности

ОПК-6.1: Выбирает средства измерения, проводит измерения электрических и неэлектрических величин, обрабатывает результаты измерений и оценивает их погрешность

ОПК-4.1: Использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока

ОПК-4.2: Использует методы расчета переходных процессов в электрических цепях постоянного и переменного тока

ОПК-3.2: Применяет математический аппарат теории функции нескольких переменных, теории функций комплексного переменного, теории рядов, теории дифференциальных уравнений

В результате освоения дисциплины обучающийся должен

3.1	Знать:					
3.1.1	- типовые методики обработки результатов экспериментов;					
3.1.2	.1.2 - параметры оборудования и режимы работы объектов профессиональной деятельности;					
3.1.3	- типовую техническую документацию					
3.2	Уметь:					
3.2.1	- определять параметры оборудования и рассчитывать режимы работы по заданной методике;					
3.2.2	- использовать технические средства для измерения и контроля основных параметров технологического процесса;					

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код	Наименование разделов и тем /вид	Семестр /	Часов	Компетен-	Литература	Примечание
занятия	занятия/	Kypc		пии		

1.1	Раздел 1. Общие положения курса. Основные понятия, определения. Причины возникновения и последствия переходных процессов. Общие сведения об электромагнитных переходных процессах. Основные определения, причины возникновения и последствия переходных процессов. Назначение расчетов и требования, предъявляемые к ним. Выбор расчетных условий. Основные допущения при расчетах. Система	4	1	ПК-4.2 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.2 Л2.3 Л2.4 Л2.5 Л2.6Л3.1 Л3.4 Э1 Э2 Э3	
1.2	относительных и именованных единиц. /Лек/ Система относительных единиц. Расчет основных характеристик короткого замыкания. /Пр/	4	4	ПК-4.2 ОПК-4.1 ОПК-3.2	Л1.1 Л1.2 Л1.5Л2.2 Л2.3 Л2.5 Э1 Э2 Э3	
1.3	1. Переходный процесс при подключении к сети ненагруженного трансформатора 2. Переходный процесс при симметричном коротком замыкании в электрической сети, питающейся от источника практически бесконечной мощности /Лаб/	4	3	ОПК-6.1	Л1.2 Л1.3 Л1.4 Л1.5Л2.2 Л2.3 Л2.5 Л2.6Л3.1 Л3.4 Л3.5 Л3.6 Э1 Э2	
1.4	Система относительных единиц. Расчет основных характеристик короткого замыкания Оценка погрешности в расчетах токов КЗ при приближенном приведении параметров схемы замещения. Понятие простейшей трехфазной цепи. /Ср/	4	48	ПК-4.2 ОПК-4.1 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.1 Л2.2 Л2.3 Л2.5 Л2.6Л3.1 Л3.2 Л3.3 Л3.4 Э1 Э2 Э3	
	Раздел 2. Переходные процессы при трехфазном КЗ в простейшей цепи					
2.1	Трехфазное КЗ в простейшей цепи, подключенной к источнику бесконечной мощности. Законы изменения периодической и апериодической составляющих тока в функции времени. Определение начального значения апериодической составляющей тока и постоянной времени затухания. Ударный ток КЗ. /Лек/	4	4	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.2 Л2.3 Л2.5 Л2.6Л3.1 Л3.2 Л3.4 Э1 Э2 Э3	
2.2	Трехфазное КЗ в цепи с источником неограниченной мощности. /Пр/	4	4	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.2 Л2.3 Л2.4 Л2.5Л3.1 Л3.4 Э1 Э2 Э3	
2.3	1. Переходный процесс при подключении к сети ненагруженного трансформатора 2. Переходный процесс при симметричном коротком замыкании в электрической сети, питающейся от источника практически бесконечной мощности /Лаб/	4	3	ПК-4.2 ОПК-6.1	Л1.1 Л1.2Л2.2 Л2.3Л3.1 Л3.4 Л3.5 Э1 Э2	

2.4	Влияние предшествующего режима и фазы включения на величину тока КЗ.Параметры, схемы замещения синхронной машины в установившемся режиме. Схемы замещения синхронной машины без демпферных обмоток. Понятие о сверхпереходных ЭДС и реактивностях синхронной машины. Схемы замещения синхронной машины с демпферными обмотками в переходном режиме. Расчет сверхпереходных ЭДС и сверхпереходных токов. Сравнение реактивностей синхронных машин. Раздел 3. Практические методы расчета режимов трехфазного	4	35	ПК-4.2 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.2 Л2.3 Л2.4 Л2.5 Л2.6Л3.1 Л3.3 Л3.4 Э1 Э2 Э3	
3.1	короткого замыкания Допущения в практических расчетах коротких замыканий. Влияние и учет нагрузки в начальный момент трехфазного КЗ. Аналитический метод расчета начального сверхпереходного тока. Расчет ударного тока. Приближенный учет системы при расчетах переходного тока КЗ. Метод расчетных кривых. /Лек/	4	3	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5Л2.2 Л2.3Л3.1 Л3.2 Л3.4 Э1 Э2 Э3	
3.2	Гашение магнитного поля системы возбуждения генератора. Системы автоматического регулирования возбуждения генератора и их влияние на переходный процесс. Понятие установившегося режима короткого замыкания. Влияние АРВ на установившийся ток КЗ. Расчет установившегося режима КЗ генератора с АРВ.Исследование влияния двигательной нагрузки на токи КЗ. Способы учета фактора «теплового спада тока короткого замыкания» при расчете КЗ и оценка его влияния на результаты расчетов.	4	30	ПК-4.2 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.2 Л2.3Л3.1 Л3.3 Л3.4 Э1 Э2 Э3	
3.3	Экзамен /Экзамен/ Раздел 4. Динамическая устойчивость ЭЭС. Определение	4	9	ПК-4.2 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.1 Л2.2 Л2.3 Л2.5Л3.1 Л3.4 Э1 Э2 Э3	Контрольная работа
4.1	условий динамической устойчивости ЭЭС Динамическая устойчивость ЭЭС: определение, задачи расчетов, основные допущения. Способ площадей. Определение запаса динамической устойчивости: 1) по соотношению площадок возможного торможения и ускорения. 2) по предельному значению мощности турбины. Аналитическое определение, определение для частного случая разрыва связи с системой. Определение предельного времени отключения трехфазного короткого замыкания в простейшей ЭЭС. Область применения способа площадей. /Лек/	5	2	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.5Л2.1 Л2.3 Л2.4 Л2.5 Л2.6Л3.2 Л3.3 Э1 Э2 Э3	

4.2	Определение предела передаваемой мощности электропередачи и коэффициентов запаса статической устойчивости. Анализ угловых характеристик мощности. Анализ зависимости предельного значения мощности генератора и коэффициента запаса от коэффициента мощности. /Пр/	5	2	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.1 Л1.3 Л1.5Л2.1 Л2.3 Л2.4Л3.1 Л3.2 Л3.3 Э1 Э2 Э3	
4.3	1. Определение предельного времени отключения короткого замыкания в одномашинной электрической системе 2. Снятие угловых характеристик синхронного генератора /Лаб/	5	2	ОПК-6.1	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.4Л3.1 Л3.2 Л3.3 Л3.6 Э1	
4.4	Анализ зависимости предельного значения мощности генератора и коэффициента запаса от коэффициента мощности. Применение способа площадей для системы «станция - станция». Анализ зависимости предельного значения мощности генератора и коэффициента запаса от коэффициента мощности. /Ср/	5	38	ПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.4Л3.1 Л3.2 Л3.3 Э1 Э2 Э3	
	Раздел 5. Статическая устойчивость ЭЭС. Необходимые и достаточные условия статической устойчивости ЭЭС					
5.1	Статическая устойчивость электро энергетических систем. Необходимые и достаточные условия статической устойчивости. /Лек/	5	2	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.4 Л1.5Л2.1 Л2.4Л3.1 Л3.2 Л3.3 Э1 Э2 Э3	
5.2	Линеаризация дифференциальных уравнений переходных процессов. Характеристическое уравнение, его корни. Необходимые и достаточные условия статической устойчивости. /Пр/	5	2	ПК-4.2 ОПК-4.1 ОПК-4.2 ОПК-3.2	Л1.3 Л1.5Л2.1 Л2.3 Л2.4 Л2.6Л3.1 Л3.2 Л3.3 Э1 Э2 Э3	
5.3	1. Переходный процесс в одномашинной электрической системе при коротком замыкании на линии электропередачи 2. Переходный процесс в одномашинной электрической системе при потере возбуждения генератора /Лаб/	5	2	ОПК-6.1	Л1.1 Л1.3Л2.1 Л2.2 Л2.4Л3.1 Л3.2 Л3.3 Л3.6 Э1	
5.4	Статическая устойчивость электро энергетических систем. Определение устойчивости состояния равновесия по Ляпунову. Теорема Ляпунова. Линеаризация дифференциальных уравнений переходных процессов. Характеристическое уравнение, его корни. Необходимые и достаточные условия статической устойчивости. Определение условий статической устойчивости простейшей ЭЭС при АРВ пропорционального действия генератора. /Ср/	5	40	ПК-4.2 ОПК-3.2	Л1.1 Л1.3 Л1.5Л2.1 Л2.2 Л2.4 Л2.6Л3.1 Л3.2 Л3.3 Э1 Э2 Э3	
	Раздел 6. Практические критерии устойчивости					

6.1	Практический критерий статической устойчивости . Исследование с помощью этого критерия влияния поперечной емкостной компенсации на статическую устойчивость узла нагрузки. /Ср/	5	45	ПК-4.2 ОПК-4.2 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.1 Л2.2 Л2.4Л3.1 Л3.2 Л3.3 Л3.4 Э1 Э2 Э3	
6.2	Курсовой проект /КП/	5	0	ПК-4.2 ОПК-4.1 ОПК-3.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.1 Л2.2 Л2.3 Л2.4 Л2.6Л3.1 Л3.2 Л3.3 Л3.4 Э1 Э2 Э3	
6.3	Экзамен /Экзамен/	5	9	ПК-4.2 ОПК-4.1 ОПК-3.2	Л1.1 Л1.3 Л1.5Л2.1 Л2.2 Л2.4Л3.2 Л3.3 Л3.4 Э1 Э2 Э3	

	5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	
	5.1. Контрольные вопросы и задания	
Представлены отдельным документом		
	5.2. Темы письменных работ	
Представлены отдельным документом		
	5.3. Фонд оценочных средств	
Представлены отдельным документом		

	6.1. Рекомендуемая литература							
		6.1.1. Основная литература						
	Авторы, составители	Заглавие	Издательство, год	Колич-вс				
Л1.1	Пилипенко В. Т.	Электромагнитные переходные процессы в электроэнергетических системах: Учебно-методическое пособие	Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014, электронный ресурс	1				
Л1.2	Кудряков А.Г., Сазыкин В.Г.	Электромагнитные переходные процессы в электроэнергетических системах: учебник	Саратов: Ай Пи Эр Медиа, 2018, электронный ресурс	1				
Л1.3	Кудряков А. Г., Сазыкин В. Г.	Электромагнитные переходные процессы в электроэнергетических системах: Учебник	Саратов: Ай Пи Эр Медиа, 2018, электронный ресурс	1				
Л1.4	Кувшинов А. А., Греков Э. Л.	Теория электропривода. Часть 3. Переходные процессы в электроприводе: Учебное пособие	Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2017, электронный ресурс	1				

Л1.5	Крючков И.П., Старшинов В.А., Гусев Ю.П., Пираторов М.В.	Переходные процессы в электроэнергетических системах: учебник	Москва: МЭИ, 2021, электронный ресурс	2
		6.1.2. Дополнительная литература		
	Авторы, составители	Заглавие	Издательство, год	Колич-во
Л2.1	Хрущев Ю. В., Заподовников К. И., Юшков А. Ю.	Электромеханические переходные процессы в электроэнергетических системах: Учебное пособие	Томск: Томский политехнический университет, 2012, электронный ресурс	1
	Авторы, составители	Заглавие	Издательство, год	Колич-во
Л2.2	Котова Е.Н., Паниковская Т.Ю.	Электромагнитные переходные процессы в электрических системах: учебно-методическое пособие	Екатеринбург: Уральский федеральный университет, 2014, электронный ресурс	1
Л2.3	Пилипенко В. Т.	Электромагнитные переходные процессы в электроэнергетических системах: Учебно-методическое пособие	Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014, электронный ресурс	1
Л2.4	Хрущев Ю. В., Заподовников К. И., Юшков А. Ю.	Электроэнергетические системы и сети. Электромеханические переходные процессы: Учебное пособие	Москва: Издательство Юрайт, 2019, электронный ресурс	1
Л2.5	Кирилина О. И.	Переходные процессы в электроэнергетических системах: лабораторный практикум: учебное пособие	Белгород: БГТУ им. В.Г. Шухова, 2021, электронный ресурс	1
Л2.6	Иванов А.С., Иванова О.А.	Переходные процессы в электроэнергетических системах. Часть 1: Учебно-методическая литература	Волгоград: ФГБОУ ВПО Волгоградский государственный аграрный университет, 2020, электронный ресурс	1
		6.1.3. Методические разработки		
	Авторы, составители	Заглавие	Издательство, год	Колич-во
Л3.1	Харитонов С. А.	Электромагнитные процессы в системах генерирования электрической энергии для автономных объектов	Новосибирск: Новосибирский государственный технический университет (НГТУ), 2011, электронный ресурс	1
Л3.2	Хрущев Ю.В., Заподовников К.И., Юшков А.Ю.	Электромеханические переходные процессы в электроэнергетических системах: Учебное пособие	Томск: Томский политехнический университет, 2012, электронный ресурс	1

	Авторы, составители	Заглавие	Издательство, год	Колич-во
ЛЗ.3	Армеев Д. В., Гусев Е. П., Долгов А. П., Чебан В. М., Чекмазов Э. М., Чебан В. М.	Электромеханические переходные процессы в электрических системах: Сборник задач	Новосибирск: Новосибирский государственный технический университет, 2010, электронный ресурс	1
Л3.4	Папков Б. В., Вуколов В. Ю.	Электроэнергетические системы и сети. Токи короткого замыкания: Учебник и практикум	Москва: Издательство Юрайт, 2019, электронный ресурс	1
Л3.5	Антипин Д. П., Мищенко В.В., Бурмистрова Е. А.	Переходные процессы в электроэнергетических системах: методические рекомендации по выполнению лабораторных работ	Сургут: Издательский центр СурГУ, 2020, электронный ресурс	1
Л3.6	Антипин Д. П. и др.	Переходные процессы в электроэнергетических системах: Ч. 1: методические рекомендации	Сургут: Издательский центр СурГУ, 2021, электронный ресурс	1
		нь ресурсов информационно-телекоммуникационной сети	"Интернет"	
Э1 Э2		ным и техническим наукам»		
Э2 Э3		ая электронная библиотека библиотека (eLIBRARY.RU)		
93	пау чная электронная С	6.3.1 Перечень программного обеспечения		
6.3.1.1	Microsoft Excel, Math			
	L	6.3.2 Перечень информационных справочных систем		
6.3.2.1	КиберЛенинка - научн	ная электронная библиотека – http://cyberleninka.ru/		
6.3.2.2	2 Научная электронная	библиотека (eLIBRARY.RU) – http://www.elibrary.ru		
6.3.2.3	3 «Издания по естествен	нным и техническим наукам» – http://dlib.eastview.com		

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)		
7.1	Аудитория №206У	
7.2	В лаборатори «электрические системы» находятся	
7.3	Модульный учебный комплекс «МУК-ППЭС» реализует на каждом рабочем месте эксперименты дисциплине «Переходные процессы в электрических системах»	
7.4	В состав модульного учебного комплекса «МУК-ЭСС» входят следующие блоки:	
7.5	1 – блок амперметра-вольтметра, измеритель параметров одно 3-фазной сети;	
7.6	2 – Однофазный трансформатор и автоматический однополюсный выключатель;	
7.7	3 – Коммутатор измерителя мощностей;	
7.8	4 – Нагрузка индуктивная, активная, емкостная и устройство продольной емкостной компенсации;	
7.9	5 – Модель линии электропередачи;	
7.10	6 – Одно 3-фазный источники питания;	
7.11	7 — Электромашинный агрегат (с машиной постоянного тока, машиной переменного тока и преобразователем углового перемещения.	
7.12	8 - Источник питания двигателя постоянного тока	
7.13	9 - Возбудитель синхронной машины	

7.14	10 - Трехполюсный выключатель
7.15	11 - Терминал
7.16	12 - Линейный реактор
7.17	13 - Блок синхронизации и ввода/вывода цифровых сигналов
7.18	14 - Трехфазная трансформаторная группа
7.19	15 - Блок измерительных трансформаторов тока и напряжения
7.20	16 - Блок датчиков тока и напряжения
7.21	17 -Измеритель напряжений и частот
7.22	18 - Указатель угла нагрузки синхронной машины
7.23	19 - Указатель частоты вращения
7.24	20 - Коннектор
7.25	21 - Программный осциллограф установленный на компьютере
7.26	С помощью 2,4,5,6,7,8,9,10,12,14 блоков собирается модель некоторой электрической сети.
7.27	Блоки 1,11,13,15,16,17,18,19 предназначены для измерения и контроля электрических параметров переменного тока и напряжения.
7.28	Коммутатор измерителя мощностей блок 3 предназначен для измерения перетоков активной, реактивной и полной мощностей.