Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенот Сергей Михайдович Для ди агностического тестирования по дисциплине Должность: ректор

Дата подписания: 19.06.2024 07:40:57

Уникальный программный клю*Математические методы в экономике, 4 семестр* e3a68<u>f3eaa1e62674b54f4998099d3d6bfdcf836</u>

013eda1e02074D3414778077d3d0DldCl830	00.02.02
Van Hannanhailia hahratankii	09.03.02 Информационные системы и
Код, направление подготовки	технологии
Направленность (профиль)	Информационные системы и технологии
Форма обучения	Очная
Кафедра разработчик	ИВТ
Выпускающая кафедра	ИВТ

Проверяемая	No	Задание	Варианты ответов	Тип
компетенция				сложности
				вопроса
ОПК-1 ОПК-8	1	При решении задачи линейного программирования геометрическим методом оптимальным решением может быть	(1) все m неосновных переменных равны нулю (2) все n-m неосновных переменных равны нулю (3) все m неосновных переменных не равны нулю (4) все n-m неосновных переменных не равны нулю	низкий
ОПК-1	2	При решении задачи	(1) одна точка	низкий
ОПК-8		линейного программирования геометрическим методом оптимальным решением может быть	(2) две точки(3) отрезок(4) интервал	
ОПК-1 ОПК-8	3	Критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции с выражением линейной функции через неосновные переменные, то решение задачи оптимально.	(1) отсутствуют отрицательные коэффициенты при неосновных переменных (2) отсутствуют положительные коэффициенты при неосновных переменных (3) отсутствуют положительные коэффициенты при основных переменных (4) присутствуют положительные коэффициенты при основных переменных	низкий
ОПК-1 ОПК-8	4	Транспортная задача решается методом:	(1) все ответы верны (2) северо-западного угла (3) минимального элемента (4) Фогеля (5) потенциалов	низкий
ОПК-1 ОПК-8	5	Условия неотрицительности переменных (случай двух переменных) ограничивают область допустимых решений квадрантом	 (1) четвертым (2) первым и вторым (3) первым (4) вторым (5) третьим 	низкий
ОПК-1	6	В двойственном симплекс методе (Р-	(1) возрастает(2) не убывает	средний

ОПК-8		метод), при переходе от одной симплекс-	(3) может то возрастать, то убывать	
		таблицы к другой целевая функция	(4) не возрастает	
ОПК-1	7	Пересечение выпуклых	(1) не является выпуклым множеством	средний
ОПК-8	'	множеств	(2) может быть, как выпуклым, так и	ередини
om o			невыпуклым множеством	
			(3) есть пустое множество	
			(4) есть выпуклое множество	
ОПК-1	8	Если исходная задача	(1) вспомогательная задача неразрешима	средний
ОПК-8		(метод искусственного	(2) оптимальное значение целевой функции	
		базиса) не имеет	вспомогательной задачи равно нулю	
		решения, то	(3) оптимальное значение целевой функции	
			вспомогательной задачи отрицательно	
			(4) целевая функция вспомогательной задачи не ограничена	
ОПК-1	9	Если в оптимальной	(1) задача не имеет решения	opouruiă.
ОПК-1	9	симплекс таблице в	(2) задача имеет два решения	средний
OHK-8		небазисном столбце	(3) задача имеет бесчисленное множество	
		симплекс разность	решений	
		равна нулю, то	(4) целевая функция не ограничена на	
		F	множестве планов	
ОПК-1	10	Метод северо-	(1) переменной х ₁₁ дается минимально	средний
ОПК-8		западного угла:	возможное значение	· F - A
31111 3		"поставщик" -	(2) переменная х ₁₁ дается максимально	
		"потребитель" так,	возможное значение	
		чтобы:	(3) после вычеркивания первого столбца	
			северо-западным элементом будет являться	
			элемент х ₁₂	
			(4) после вычеркивания первого столбца	
			северо-западным элементом будет является	
			элемент x ₁₁	
			(5) после вычеркивания первого столбца	
			северо-западным элементом будет является	
ОПК-1	1.1	Согласно первой	элемент x ₂₁ (1) если одна задача имеет оптимальное	
ОПК-1	11	теореме	решение, то двойственная задача	средний
OHK-8		двойственности:	оптимального решения не имеет	
		двоиственности.	(2) если одна задача имеет оптимальное	
			решение, то двойственная задача тоже имеет	
			оптимальное решение	
			(3) если линейная функция одной из задач не	
			ограничена, то условия двойственной задачи	
			противоречивы	
			(4) если линейная функция одной из задач не	
			ограничена, то линейная функция	
			двойственной задачи тоже не ограничена	
ОПК-1	12	К каноническому виду	(1) любую задачу линейного	средний
ОПК-8		можно привести	программирования	
			(2) задачу линейного программирования, в	
			которой все переменные принимают	
			неотрицательные значения	
			(3) задачу линейного программирования с	
			целевой функцией на минимум (4) Задачу линейного программирования с	
			(4) задачу линеиного программирования с целевой функцией на максимум	
ОПК-1	13	Транспортная задача.	(1) мощности всех поставщиков были	OPOHITY
	13	Транспортная задача. Найти объемы	реализованы	средний
ОПК-8		перевозок для каждой	(2) мощности всех поставщиков были	
		пары "поставщик" -	минимальны	
		"потребитель" так,	(3) спросы всех потребителей были	
	ı	1	1 \ / 1	

			1.0	
			(4) спросы всех потребителей были	
			удовлетворены	
			(5) суммарные затраты на перевозку были	
			минимальными	
			(6) суммарные затраты на перевозку были бы	
			удовлетворены	
ОПК-1	14	Если в задаче	(1) все К-матрицы канонической задачи	средний
ОПК-8		линейного	имеют одинаковый вид	- F - M
OTIK 0		программирования	(2) существует как минимум два опорных	
		существует	плана, в которых целевая функция	
		бесчисленное	оптимальна	
		множество решений,	(3) все опорные планы являются решением	
		то		
		10	задачи	
			(4) существует бесчисленное число К-матриц	
		70	канонической задачи	
ОПК-1	15	Какое из следующих	(1) целевая функция подлежит максимизации	средний
ОПК-8		условий не входит в	(2) все функциональные ограничения	
		определение	записываются в виде равенств с	
		канонической формы	неотрицательной правой частью	
		задачи линейного	(3) все переменные неотрицательны	
		программирования?	(4) все коэффициенты матрицы ограничений	
			неотрицательны	
ОПК-1	16	Оптимальное решение	(1) только внутренней точкой множества	высокий
ОПК-8		задачи линейного	планов	
OTHE O		программирования	(2) только угловой точкой множества	
		может быть		
			планов	
			(3) как внутренней, так и угловой точкой	
			области допустимых решений	
			(4) угловой и граничной точкой	
			множества планов	
ОПК-1	17	Ранний срок начала	(1) tp(i)	высокий
ОПК-1	17	работы в сетевом	$(2) \operatorname{tp}(i) + \operatorname{t}(i,j)$	высокии
OHK-8		графике (СГ)	$(3) \operatorname{tn}(j)$	
		определяется по	$(4) \operatorname{tn}(j) - \operatorname{t}(i,j)$	
OTIL: 1	1.0	формуле:	(1) (' , , '') 'Ψ	J
ОПК-1	18	Оценки матрицы	(1) (ui + cij) - vj*	высокий
ОПК-8		перевозок (детермин.)	(2) vj - cij	
		определяются:	(3) ui + cij	
			(4) все ответы верны	
ОПК-1	19	Мощности	(1) vj - cij*	высокий
ОПК-8		потребителей	(2) ui + cij	
		определяются по	(3) (ui + cij) - vj	
		формуле:	(4) все ответы верны	
ОПК-1	20	Мощности	(1) ui + cij*	высокий
ОПК-8		поставщиков	(2) vj - cij	
		определяются по	(3) (ui + cij) - vj	
		формуле:	(4) все ответы верны	
		формуло.	(1) bee of before bepring	